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Genetic Factors in Congenital Diaphragmatic Hernia
A. M. Holder,* M. Klaassens,* D. Tibboel, A. de Klein, B. Lee, and D. A. Scott

Congenital diaphragmatic hernia (CDH) is a relatively common birth defect associated with high mortality and morbidity.
Although the exact etiology of most cases of CDH remains unknown, there is a growing body of evidence that genetic
factors play an important role in the development of CDH. In this review, we examine key findings that are likely to
form the basis for future research in this field. Specific topics include a short overview of normal and abnormal diaphragm
development, a discussion of syndromic forms of CDH, a detailed review of chromosomal regions recurrently altered in
CDH, a description of the retinoid hypothesis of CDH, and evidence of the roles of specific genes in the development
of CDH.
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Congenital diaphragmatic hernia (CDH [MIM 142340,
222400, 610187, and 306950]) is defined as a protrusion
of abdominal viscera into the thorax through an abnormal
opening or defect that is present at birth. In some cases,
this protrusion is covered by a membranous sac. In con-
trast, diaphragmatic eventrations are extreme elevations,
rather than protrusions, of part of the diaphragm that is
often atrophic and abnormally thin. CDH is a relatively
common birth defect, with an incidence of ∼1 in every
3,000 live births.1,2 CDH is often associated with poten-
tially lethal lung hypoplasia and pulmonary hyperten-
sion. Despite advances in therapy, mortality remains high,
especially among severely affected infants, and long-term
morbidity among survivors is common.3

The most common type of CDH is the posterolateral,
or Bochdalek-type, hernia, which accounts for 90%–95%
of CDH cases.1 Other types of CDH include anterior re-
trosternal or peristernal Morgagni hernias, central (septum
transversum) hernias, and pars sternalis hernias, which are
found in the pentalogy of Cantrell—a rare association in-
volving abnormalities of the anterior diaphragm, sternum,
heart, and abdominal wall.

Although there are multiple examples of familial cases
of CDH in the literature, the recurrence risk for isolated
cases of CDH is often reported to be !2% on the basis of
a mathematical model of multifactorial inheritance
risk.1,4,5 Empiric data also suggest a relatively low recur-
rence risk for CDH.6–8 Although multifactorial inheritance
may best explain most cases of CDH in humans, much
has been learned about the genetic factors that play a role
in the development of CDH by studies of patients with
CDH caused by specific genetic syndromes and chromo-
some anomalies. Our understanding of CDH has also been
aided by basic research with the use of dietary, teratogen-
induced, and knockout models of CDH.

Overview of Normal and Abnormal Diaphragm
Development

The development of the human diaphragm occurs be-
tween the 4th and 12th wk of gestation. Traditional views
of diaphragm development suggest that the diaphragm
arises from four different structures.9 The septum trans-
versum gives rise to the central portion of the diaphragm,
the pleuroperitoneal folds (PPFs) give rise to the poster-
olateral section of the diaphragm, the dorsal (esophageal)
mesentery gives rise to a portion of the diaphragm pos-
terior to the esophagus, and elements from the thoracic
body wall contribute to a rim of musculature around the
diaphragm’s periphery. In contrast to this traditional view,
systematic examinations of diaphragm development in
rodents have failed to identify contributions to the dia-
phragm musculature from the lateral body wall, the sep-
tum transversum, or the esophageal mesenchyme.10

Rather, myogenic cells and axons were shown to coalesce
within the PPF and then to expand to form the neuro-
muscular component of the diaphragm.10 If further in-
vestigation shows that this model provides an accurate
depiction of diaphragm development in humans, the clas-
sic view of diaphragm development will need to be
revised.11

Several theories have been proposed concerning the pri-
mary embryologic events that lead to the development of
CDH. Events implicated in these theories have included
(1) abnormalities in (ipsilateral) lung development, (2)
failure of closure of the pleuroperitoneal canals, (3) de-
fective myoblast formation, and (4) abnormal phrenic
nerve innervation.12–14

Although it is possible that each of these abnormalities
may play a role in the development of some cases of CDH,
there is growing evidence from animal models that CDH



Table 1. Examples of Genetic Syndromes Associated with CDH

Syndrome Name Chromosome(s) Gene(s) Brief Description

Beckwith-Wiedemann (MIM
130650)

11p15, 5q35 CDKN1C (MIM 600856), NSD1 (MIM
606681)

Autosomal dominant inheritance, macroglossia, hypoglycemia, viscero-
megaly, abdominal-wall defects, and overgrowth

CHARGE (MIM 214800) 8q12.1 CHD7 (MIM 608892) Autosomal dominant inheritance, coloboma, cardiac abnormalities,
choanal atresia, growth retardation, genital abnormalities, ear ab-
normalities, and hearing loss

Cornelia de Lange (MIM 122470
and 300590)

5p13.1, Xp11.22-p11.21 NIPBL (MIM 608667), SMC1A (MIM
300040)

Autosomal dominant inheritance, distinctive facial features, micro-
cephaly, hirsutism, malformations of the upper limbs, and growth
retardation

Craniofrontonasal (MIM 304110) Xq12 EFNB1 (MIM 300035) X-linked dominant inheritance, females more severely affected, cranio-
synostosis, hypertelorism, broad nasal tip, grooved nails of the hal-
lux and thumb, syndactyly, and skeletal abnormalities

Denys-Drash (MIM 194080) 11p13 WT1 (MIM 607102) Autosomal dominant inheritance, male pseudohermaphroditism, geni-
tal abnormalities, and increased risk of Wilms tumor

Donnai-Barrow (MIM 222448) 2q23-q3130 … Autosomal recessive inheritance, CDH, omphalocele, agenesis of the
corpus callosum, hypertelorism, and hearing loss

Fryns (MIM 229850) Fryns-like phenotype has been seen with
duplication of 1q24-q31.2; deletion of
the terminal portion of 6q, 8p23.1, and
15q26; and partial trisomy 2224,26–29

… Autosomal recessive inheritance, CDH, coarse facial features, cleft lip/
palate, cardiac malformations, cerebral abnormalities, and hypoplas-
tic finger/toenails

Pallister-Killian (MIM 601803) Mosaic tetrasomy 12p … Coarse facial features with broad forehead and hypertelorism, sparse
temporal hair, hypopigmentations, and mental retardation

Simpson-Golabi-Behmel (MIM
312870 and 300209)

Xq26, Xp22.3-p22.2 GPC3 (MIM 300037), CXORF5 (MIM
300170)

X-linked recessive inheritance, macrosomia, coarse facial features, hy-
pertelorism, macroglossia, skeletal abnormalities, abdominal-wall
defects, and renal abnormalities

Thoracoabdominal (MIM 313850) Xq25-q26.1 … X-linked dominant inheritance, diaphragmatic and ventral hernias, hy-
poplastic lungs, and cardiac anomalies

Wolf-Hirschhorn (MIM 194190) 4p16 … “Greek helmet” facial appearance, mental and growth retardation,
cleft lip/palate, cardiac defects, and epilepsy
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arises from malformation of the amuscular mesenchymal
substratum of the PPF before pleuroperitoneal canal
closure.10,15,16 Critical findings that support this model in-
clude the normal formation of the primordial diaphragm
in Fgf10�/� mouse embryos that have complete lung agen-
esis and the ability to induce defects characteristic of CDH
in c-met�/� mouse embryos that do not form diaphragm
muscle fibers because of a defect in muscle precursor
migration.16

Pulmonary hypoplasia is one of the most serious clinical
complications accompanying CDH. The role of physical
compression on the development of pulmonary hypopla-
sia in CDH was effectively demonstrated in studies of sur-
gically produced CDH in fetal lambs and is consistent with
the observation that pulmonary hypoplasia is usually
more severe on the side of the diaphragmatic defect.17,18

However, studies of lung development in rodents with
CDH caused by in utero exposure to the herbicide nitrofen
suggested that pulmonary hypoplasia was present before
development of a diaphragmatic defect.12,19 This obser-
vation led to the development of the dual-hit hypothesis,
which states that pulmonary hypoplasia can be caused by
the combined effect of an early insult that directly affects
lung development followed by further restriction in lung
growth, later in gestation, secondary to diminished fetal
breathing movements and competition for space as a re-
sult of the herniation of the abdominal contents into the
thoracic cavity.19

It is possible that these two hits may be caused by defects
within a single gene that affects both lung and diaphragm
development. Examples of genes that are known to affect
both lung and diaphragm development include Friend of
GATA2 (FOG2 [MIM 603693]) and GATA-binding protein 4
(GATA4 [MIM 600576]).20–22 In the future, it may be pos-
sible to formally test the dual-hit hypothesis by generating
conditional knockout mice in which the lungs and the
primordial diaphragm are targeted separately. These stud-
ies may also provide another means of testing whether
diaphragmatic defects can be induced or altered by a pri-
mary pulmonary insult.

Syndromic Forms of CDH

CDH may occur either as an isolated birth defect or in
association with other non–hernia-related anomalies
(known as “nonisolated CDH” or “CDH�”). Some anom-
alies—including lung hypoplasia, abnormalities in cardiac
position, intestinal malrotation, and patent ductus arter-
iosus—are typically considered secondary effects of CDH
and are not considered grounds for classification as non-
isolated CDH. Common findings associated with CDH in-
clude cardiovascular abnormalities, abnormalities of the
CNS, and genitourinary and/or renal anomalies.

Some individuals with nonisolated CDH have patterns
of anomalies that are strongly suggestive of a specific ge-
netic syndrome. In patients with CDH for whom a syn-
dromic diagnosis can be provided, the most frequently

diagnosed syndrome is Fryns syndrome (MIM 229850).23–25

However, reports of individuals with Fryns-like pheno-
types associated with chromosomal anomalies—including
duplication of 1q24-q31.2; deletion of the terminal por-
tion of 6q, 8p23.1, and 15q26; and partial trisomy 22—
suggests that some cases of CDH attributed to this auto-
somal recessive syndrome are likely to represent geno-
copies of this disorder.24,26–29

Many of the syndromes associated with CDH have spe-
cific Mendelian inheritance patterns and, in some cases,
the location and/or the identity of the causative gene(s)
is known. Examples of CDH syndromes associated with a
particular chromosomal locus or causative gene(s) are
shown in table 1. CDH is a cardinal feature of some of
these syndromes, whereas, for others, the rates of CDH
are lower but probably exceed the level seen in the general
population.

The existence of genetic syndromes associated with
CDH provides one of the strongest lines of evidence that
genetic factors play a role in the development of CDH. It
is likely that much of our understanding of CDH will be
shaped by studies that focus on understanding the mo-
lecular mechanisms by which changes in these genes re-
sult in diaphragmatic defects. These studies may, in turn,
help us identify interacting genes that are involved in the
development of other forms of CDH.

Chromosomal Abnormalities Described in Patients
with CDH

Chromosomal anomalies have been identified as an im-
portant etiology for nonisolated CDH.31 In the majority
of published cases, chromosome anomalies were identi-
fied using a combination of G-banded chromosome anal-
ysis and/or FISH. The use of new genomic technologies—
like array-based comparative genomic hybridization (array
CGH)—is likely to increase the number of chromosomal
anomalies identified in individuals with CDH and may
aid in the identification of CDH-related genes.23,24,32

Trisomy 13, 18, and 21 and 45,X are the most common
aneuploidies described in association with CDH.31 Struc-
tural abnormalities—including deletions, duplications, in-
versions, and translocations—of nearly all chromosomes
have also been described in association with CDH.33,34

Both Lurie33 and Enns et al.34 have published useful re-
views of chromosomal anomalies associated with CDH.
Using these reviews as a foundation, we have compiled
an updated list of the CDH-associated chromosomal
anomalies (table 2).

Chromosomal regions that are involved in balanced
translocation or are recurrently deleted or duplicated in
patients with CDH are of particular interest to researchers,
because they are more likely to harbor genes that cause
or predispose to the development of CDH than are less
commonly affected regions of the genome. It is important
to note that many of the deletions and duplications de-
scribed in the literature are the product of unbalanced
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Figure 1. Chromosomal regions and selected candidate genes for CDH. Recurrent chromosomal abnormalities associated with patients
with CDH are represented by colored bars. For each region, the number of patients described with that duplication (red bar), deletion
(green bar), or translocation/inversion (blue bar) is given. Selected candidate genes and genetic syndromes are included beside their
respective regions. PKS p Pallister-Killian syndrome; WHS p Wolf-Hirschorn syndrome.

translocations, and it is possible that the diaphragmatic
defects seen in these cases are caused by two or more genes
located in nonadjacent chromosomal regions. It should
also be noted that, in most instances, CDH occurs in only
a fraction of individuals with a particular chromosomal
abnormality. This suggests that genetic background, en-
vironmental factors, and/or stochastic events may also
play a role in determining whether an individual develops
CDH.

Chromosomal regions that have been associated with
CDH in three or more individuals are shown in figure 1
and are described individually below. Several of these in-
tervals overlap the position of genes that are involved in
the retinoic-acid signaling pathway—which has been hy-
pothesized to play a role in the development of CDH—or
genes that have been implicated in the development of
CDH because of studies involving animal models and/or
human subjects. In most cases, the chromosomal region
described represents a minimally affected region defined
by G-banded chromosome analysis and/or FISH. In in-
stances where the minimal affected region has been de-
fined using high-resolution techniques, such as array
CGH, we have made specific mention of these results.

Duplication of 1q25q31.2

Duplication of this region has been described in at least
seven patients with CDH.26,40–42,44–46 At least three of these
cases of CDH were also associated with cleft palate.

Deletion of 1q41-q42

Deletions of this region have been reported in four cases
of CDH.23,49–51 Three cases involve a larger deletion, iden-
tified by standard cytogenetics techniques. The smallest
deletion was determined by Kantarci et al.23 using high-
resolution array CGH that refined the interval to an ∼5-
Mb region bounded by BACs RP11-553F10 and RP11-
275O4. One individual with balanced translocation and
one individual with an inversion involving 1q41 have also
been described.36,39

Deletion or Duplication of 2q37

CDH has been described in seven patients with deletions
of 2q37and in two patients with 2q37 duplications.39,45,56–61

Interestingly, in almost all these patients, the duplication
or deletion starts at band q37. Of the patients in whom



Table 2. Structural Chromosomal Anomalies Described in Patients with CDH

Chromosome, Type of Anomaly, and Patient Karyotype Study Author(s)

Chromosome 1:
Balanced translocation:

46,X,t(X;1)(q26;q12) Punnett35

46,XY,t(1;15)(q41;q21.2) de novo Smith et al.36

46,XY,t(1;21)(q32;q22)pat Howe et al.37

46,XY,t(1;14)(p22;q13),inv(6)(p25q22),del(15)(q26.1q26.2) Klaassens et al.38

Inversion:
46,XY,inv(1)(q41q44)mat Tonks et al.39

Duplication:
46,XY/46,X,der(Y)t(Y;1)(q12;q12) Ahn et al.40

46,XY[9]/46,X,der(Y),t(Y;1)(q12;q12)[12] Zeng et al.41

46,XX,der(22)t(1;22)(q12;p12)[11]/46,XX[9] Ahmed et al.42

der(9)t(1;9)(q32.3;p24.1) Kousseff43

dup(1)(q22q32) Schneider et al.44

dup(1)(q22q32)mosaicism van Dooren45

46,XY/46,XY,dup(1)(q24.2q31.2) Clark and Fenner-Gonzalez26

dup(1)(q25q31.2) Mehraein et al.46

Deletion:
der(1)t(1;21)mosaicism Philip et al.47

46,XX,del(1)(p) Benjamin et al.48

46,XX,del(1)(q32.3q42.3) Youssoufian et al.49

46,XY,del(1)(q41q42.12) Kantarci et al.23

46,XY,del(1)(q32.3q42.2) Slavotinek et al.50

46,XX,del(1)(q42.11q42.3) Rogers et al.51

Chromosome 2:
Duplication:

46,XX/47,XX,der(2)del(2)(p13)del(2)(q12) Grevengood et al.52

der(X)t(X;2)(q27;p13)mat Sarda et al.53

dup(2)(p13p25) van Dooren45

dup(2)(p21p25) van Dooren45

der(6)t(2;6)(p23;p25) Bender et al.54

46,XY,dup(2)(p21p25) Heathcote et al.55

46,XY,der(7)t(2;7)(p25.3;q34)mat Enns et al.34

dup(2)(q33q37) Johnson et al.56

46,XY,der(15)t(2;15)(q37.2;q26.2) Scott et al.57

Deletion:
46,XX,der(2)t(2;7)(q36;q37)pat Brackley et al.58

46,XY,del(2)(q33q35 or q35q37) de novo Tonks et al.39

46,XY,der(2)t(2;8)(q37;p11.2)pat Tonks et al.39

46,XX,der(2)t(2;14)(q37.1;q31.2) van Dooren45

der(2)t(2;14)(q37;q31.2) De La Fuente et al.59

46,XX,del(2)(q37.1) Casas et al.60

46,XY,del(2)(q37.3) Reddy et al.61

Chromosome 3:
Balanced translocation:

46,XY,t(3;12)(p21.1;p13.3) de novo Tonks et al.39

Duplication:
der(21)t(3;21)(p24.3;q11.2)mat Pettigrew62

46,XX,der(15)t(3;15)(q29;q26.1)mat Rosenberg et al.63

Deletion:
del(3)(p) Steinhorn et al.64

del(3)(p12p21) Pfeiffer et al.65

46,XY,del(3)(q11.1q13.2)/47,XY,del(3)(q11.2q13.2),�r(3) Brennan et al.66

46,XY,del(3)(q21q23) Wolstenholme et al.67

del(3)(q22); two patients Dillon et al.68

der(3)t(3;5)(q27;q31) Kristeshavilli et al.69

Miscellaneous:
46,XY,der,t(3;8)(p23;p23.1) Tibboel and Gaag31

Chromosome 4:
Ring chromosomea:

45,XX,�4/46,XX,r(4)(p1?6;q3?3) Kocks et al.70

(continued)
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Table 2. (continued)

Chromosome, Type of Anomaly, and Patient Karyotype Study Author(s)

Duplication:
46,XY,rec(4),dup(4)(q),inv(4)(p15.2q25)pat Kobori et al.71

46,XY,inv dup(4)(q32q26),del(4)(q32) Frints et al.72

46,XX,der(22)t(4;22)(q28.3;p13) Celle et al.73

46,XY,der(18)t(4;18)(q31;q23) Yunis et al.74

dup(4)(q25q31) van Dooren45

Deletion:
46,XY,del(4)(p16) van Dooren et al.75

del(4)(p16); two patients Howe et al.37

46,XY,del(4)(p16) Tachdjian et al.76

del(4)(p16) Pober et al.8

del(4)(p16.3) Casaccia et al.77

46,XY,rec(4),dup(4)(q),inv(4)(p15.2q25)pat Kobori et al.71

del(4)(p16); two patients Laziuk et al.78

46,XX,del(4)(p13) Sergi et al.79

del(4)(p16.3) Van Buggenhout et al.80

del(4)(p16.3) Slavotinek et al.50

46,XX,der(4)t(4;13)(p16;q32) Tapper et al.81

del(4)(q31.3) Del Campo et al.82

46,XX,del(4)(qter) Park et al.83

del(4)(q31) van Dooren45

del(4)(q31.1q31.3 or q31.3q32.2) Wakui et al.84

del(4)(q31) Young et al.85

46,XY,inv dup(4)(q32q26),del(4)(q32) Frints et al.72

der(4)t(4;20)(q34.2;q13.1)pat Pober et al.8

der(4)t(4;20)(q34.2;q13.1)pat Reiss et al.86

Chromosome 5:
Duplication:

Partial trisomy 5 Bollmann et al.87

dup(5)(q33) Korner et al.88

46,XY,�9,�t(5q;9p) Torfs et al.1

der(15)t(5;15)(p15.3;q24), two cases Aviram-Goldring et al.89

der(9)t(5;9)(p13;p22) Liberfarb et al.90

47,XY,t(5;13)(p15;q21)�der(13)t(5;13)(p15;q21)mat Masuno et al.91

der(3)t(3;5)(q27;q31) Kristeshavilli et al.69

Deletion:
del(5)(q13q22) Kousseff43

Chromosome 6:
Balanced translocation:

46,XY,t(6;8)(q24;q23) Howe et al.37

Inversion:
46,XY,t(1;14)(p22;q13),inv(6)(p25q22),del(15)(q26.1q26.2) Klaassens et al.38

Duplication:
47,XY,�der(22)t(6;22)(p25;q11.2) Scarbrough et al.92

46,XY,der(15)t(6;15)(p25;q24)mat Kristofferson et al.93

der(15)t(6;15)(p25;q24)mat Kristofferson et al.93

46,XX, inv dup(6)(p25.2p22.2) Scott et al.57

Deletion:
der(6)t(2;6)(p23;p25) Bender et al.54

46,XY,der(6)t(X;6)(p21.2;p25) Batanian et al.94

46,XY,der(6)t(6;8)(p25.1;q24.23) Baruch and Erickson95

del(6)(q15q21) Yu and Bock96

46,XY,del(6)(q23) Shen-Schwarz et al.97

del(6)(q23) van Dooren45

46,XX,del(6)(q25.3) Krassikoff and Sekhon27

del(6)(qter)mat Le Caignec et al.32

Miscellaneous:
46,XX,add(6)(q23 or q25) Tonks et al.39

Chromosome 7:
Duplication:

dup(7)(p15p22) Herrmann et al.98

46,XX,der(2)t(2;7)(q36;q37)pat Brackley et al.58

46,XY,der(18)t(7;18)(qter;p11.1) Habedank and Trost-Binkhues99

(continued)
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Table 2. (continued)

Chromosome, Type of Anomaly, and Patient Karyotype Study Author(s)

Deletion:
del(7)(p21) van Dooren45

del(7)(q) Fauza and Wilson100

del(7)(q11q22) Klep-de Pater et al.101

46,XY,del(7)(q32) Torfs et al.1

46,XX,del(7)(q32) Dott et al.102

der(7)t(7;20)(q33.2;p13) Kjaer et al.103

46,XY,der(7)t(2;7)(p25.3;q34)mat Enns et al.34

Miscellaneous:
chtb(7)(q31.1) Bonneau et al.104

Chromosome 8:
Balanced translocation:

46,XY,t(6;8)(q24;q23) Howe et al.37

t(8;14)(q24;q21) Philip et al.47

46,XX,t(8;13)(q22.3q22)mat Temple et al.105

46,XX,t(8;15)(q22.3q15) de novo Temple et al.105

Duplication:
Trisomy 8 mosaicism Pober et al.8

46,XY,der(2)t(2;8)(q37;p11.2)pat Tonks et al.39

46,XY, inv dup(8)(p23.1p11.22) Ringer et al.106

dup(8)(p21) van Dooren45

46,XY,der(12)t(8;12)(p21;p13) Moreno Fuenmayor et al.107

46,XX,der(15)t(8;15)(q24.1;q26.1) Chen et al.108

46,XY,dup(8)(q) Hilfiker et al.109

46,XY,der(6)t(6;8)(p25.1;q24.23) Baruch and Erickson95

Deletion:
46,XY,del(8) Thorpe-Beeston et al.110

del(8)(p) Pober et al.8

del(8)(p22) Kousseff43

46,XY,del(8)(p23.1) Howe et al.37

del(8)(p23.1) Faivre et al.111

46,XY,del(8)(p23.1p23.1) Shimokawa et al.112

46,XX,del(8)(p23.1) Borys and Taxy113

46,XY,del(8)(p23.1) Lopez et al.114

46,XX,del(8)(p23.1) Pecile et al.115

46,XY,del(8)(p23.1) Fraer et al.116

46,XY,del(8)(p23.1:p23.1) Slavotinek et al.24

del(8)(q21.2q22) Maerzke et al.117

del(8)(q22q24.1) Harnsberger et al.118

del(8)(q22q24.1) Capellini et al.119

Miscellaneous:
46,XX,add(8)(p?) Betremieux et al.120

46,XY,der,t(3;8)(p23;p23.1) Tibboel and Gaag31

Chromosome 9:
Ring chromosomea:

r(9) Dillon et al.68

Duplication:
47,XX,�9 Chen et al.121

47,XY,�9 Suzumori et al.122

47,XX,�9 Sepulveda et al.123

Trisomy 9 Frohlich124

Trisomy 9 Robert et al.125

Trisomy 9 Dott et al.102

47,XX,�i(9p) Henriques-Coelho et al.126

Deletion:
46,XX,der(9)t(9;16)(p22;q24) Alfi et al.127,128

der(9)t(5;9)(p13;p22); two patients Liberfarb et al.90

46,XY,der(9)t(9;11)(p24;p13)pat Donnenfeld et al.129

46,XY,�9,�t(5q;9p) Torfs et al.1

46,XY,der(9)t(9;16)(q34.3;q24.3) Ferrero et al.130

der(9)t(1;9)(q32.3;p24.1) Kousseff43

Chromosome 10:
Balanced translocation:

t(X,10) de novo Cunniff et al.131

(continued)
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Table 2. (continued)

Chromosome, Type of Anomaly, and Patient Karyotype Study Author(s)

Duplication:
46,XY,der(21)t(10;21)(p11;p11) Yunis et al.132

46,XY,der(20)t(10;20)(p12;p12) Lurie et al.133

Miscellaneous:
46,XY,add(10)(q?q24) de novo Tonks et al.39

Chromosome 11:
Duplication:

46,XY,der(9)t(9;11)(p24;p13)pat Donnenfeld et al.129

47,XX or XY,�der(22)t(11;22)(q23;q11) Iselius et al.,134 Fraccaro et al.,135 Phelan et al.,136 Azancot et
al.,137 de Beaufort et al.,138 Aurias et al.,139 Noel et al.,140

Dean et al.,29 Kousseff,43 Hickmann et al.,141 van Dooren,45

Tonks et al.,39 Dott et al.,102 Borys and Taxy,113 and Kadir et
al.142

47,XY,�der(13)t(11;13)(q21;q14) Park et al.143

46,XY,der(12)t(11;12)(q23.3;q24.3)mat Klaassens et al.144

Deletion:
46,XY,del(11)(p12p15.1) Scott et al.145

del(11)(p13) Gustavson et al.146

46,XY,?del(11)(q23),9qh� Dott et al.102

46,XX,der(11)t(11;12)(q24;p11.2) Decker-Philips et al.147

Chromosome 12:
Balanced translocation:

t(12;15) Fauza and Wilson100

46,XY,t(3;12)(q21.1;p13.3) de novo Tonks et al.39

Duplication:
Mosaic tetrasomy 12p Bergoffen et al.,148 Corning et al.,149 Rodriguez et al.,150 Don-

nenfeld et al.,129,151 Dott et al.,102 Betremieux et al.,152 Veld-
man et al.,153 Witters et al.,154 Tonks et al.,39 Borys and
Taxy,113 Takakuwa et al.,155 and Pober et al.8

46,XX,der(11)t(11;12)(q24;p11.2) Decker-Philips et al.147

der(15)t(12;15) Pober et al.8

Deletion:
46,XY,der(12)t(8;12)(p21;p13) Moreno Fuenmayor et al.107

46,XY,del(12) Howe et al.37

46,XY,der(12)t(11;12)(q23.3;q24.3)mat Klaassens et al.144

Chromosome 13:
Balanced translocation:

46,XX,t(8;13)(q22.3q22)mat Temple et al.105

Ring chromosomea:
r(13) van Dooren45

Duplication:
47,XY,�der(13)(qterrq31::q31rneorqter) Warburton et al.156 and Tohma et al.157

46,XX,der(4)t(4;13)(p16;q32) Tapper et al.81

47,XY,�der(13)t(11;13)(q21;q14) Park et al.143

47,XY,t(5;13)(p15;q21)�der(13)t(5;13)(p15;q21)mat Masuno et al.91

Deletion:
46,XX,13q- Benjamin et al.48

Chromosome 14:
Balanced translocation:

t(8;14)(q24;q21) Philip et al.47

46,XY,t(1;14)(p22;q13),inv(6)(p25q22),del(15)(q26.1q26.2) Klaassens et al.38

Duplication:
dup(14)(q24q32) van Dooren45

46,XX,dup(14)(q32.1) Masada et al.158

der(2)t(2;14)(q37;q31.2) De La Fuente et al.59

46,XY/47,XY,�14 Howe et al.37

46,XX/46,XX,i(14)(q10) Scott et al.57

Deletion:
46,XY,del(14)(q32.11qter), bilateral eventration Masada et al.158

Chromosome 15:
Balanced translocation:

46,XY,t(1;15)(q41;q21.2) de novo Smith et al.36

46,XX,t(8;15)(q22.3q15) de novo Temple et al.105

t(12;15) Fauza and Wilson100

(continued)
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Table 2. (continued)

Chromosome, Type of Anomaly, and Patient Karyotype Study Author(s)

Duplication:
inv dup(15) van Dooren45

46,XY,dup(15)(q11q13)mat Boyar et al.159

47,XX,�dic(15)(q11.2) Howe et al.37

dup(15)(q15q26) van Dooren45

dup(15)(q15q26) � del(X)(p22) van Dooren45

der(X)t(X;15)(p22;q15)mat Zabel and Baumann160

Deletion:
46,XY,r(15)(p11q26) de Jong et al.28

46,XY,r(15)(p11q26.1), two cases Klaassens et al.38

r(15)(q25.3) Elghezal et al.161

46,XY,der(15)t(6;15)(p25;q24)mat Kristofferson et al.93

der(15)t(6;15)(p25;q24)mat Kristofferson et al.93

46,XX,der(15)t(3;15)(q29;q26.1)mat Rosenberg et al.63

46,XX,der(15)t(15;17)(q24.3;q23.3) Howe et al.37

46,XY,del(15)(q24) 46,XX,del(15)(q24) Bettelheim et al.162

46,XX,der(15)t(8;15)(q24.1;q26.1) Chen et al.108

46,XY,der(15)t(15;20)(q26.3;q13.1) Reiss et al.86

der(15)t(5;15)(p15.3;q24), two cases Aviram-Goldring et al.89

46,XX,del(15)(q25q26.2) Schlembach et al.163

46,XX,del(15)(q26.1) Biggio et al.164

46,XX,del(15)(q26.1) de novo Hengstschlager et al.165

46,XY,del(15)(q26.1) de novo Tonks et al.39

46,XY,r(15)(q26.2) Tumer et al.166

46,XY,t(1;14)(p22;q13),inv(6)(p25q22),del(15)(q26.1q26.2) Klaassens et al.38

del(15)(q26) Pober et al.8

der(15)t(12;15) Pober et al.8

46,XX,del(15)(q26.2) Slavotinek et al.24

46,XX,del(15)(q26.2;26.2) Slavotinek et al.24

46,XY,der(15)t(8;15)(q24.2;q26.2) Slavotinek et al.50

del(15)(q26.1) Lopez et al.114

46,XY,der(15)t(2;15)(q37.2;q26.2) Scott et al.57

Chromosome 16:
Duplication:

47,XY� mar 16 Howe et al.37

46,XX,der(9)t(9;16)(p22;q24) Alfi et al.127,128

46,XY,der(9)t(9;16)(q34.3;q24.3) Ferrero et al.130

47,XX,�16[3]/46,XX[15] Chen et al.167

47,XX,�16 Johnson et al.168

Chromosome 17:
Ring chromosomea:

46,XX,r(17)/45,XX,�17 Baldermann et al.169

Duplication:
45,XX,der(15)t(15;17)(q24.3;q23.3) Howe et al.37

Chromosome 18:
Duplication:

46,XX/46,XX,del(18)(ptel)/46,XX,�18, �i(18q) Le Caignec et al.32

46,XY,idic(18)(p11)[15]/45,XY,�18[6]/46,XY,del(18)(p11.7)[6]/
spurious cells[3]

Dott et al.102

iso(18)(q) Hayashi et al.170

Deletion:
46,XX/46,XX,del(18)(ptel)/46,XX,�18, �i(18q) Le Caignec et al.32

46,XY,idic(18)(p11)[15]/45,XY,�18[6]/46,XY,del(18)(p11.7)[6]/
spurious cells[3]

Dott et al.102

iso(18)q Hayashi et al.170

46,XY,der(18)t(7;18)(qter;p11.1) Habedank and Trost-Binkhues99

46,XY,der(18)t(4;18)(q31;q23) Yunis et al.74

45,XX,der(18)t(18;22)(qter;q11),�22 Geneix et al.171

Chromosome 20:
Duplication:

der(4)t(4;20)(q34.2;q13.1)pat Reiss et al.86

der(7)t(7;20)(q33.2;p13) Kjaer et al.103

46,XY,der(15)t(15;20)(q26.3;q13.1) Reiss et al.86

der(4)t(4;20)(q34.2;q13.1)pat Pober et al.8

Deletion:
46,XY,der(20)t(10;20)(p12;p12) Lurie et al.133

(continued)
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Table 2. (continued)

Chromosome, Type of Anomaly, and Patient Karyotype Study Author(s)

Chromosome 21:
Translocation:

46,XY,t(1;21)(q32;q22)pat Howe et al.37

Duplication:
der(1)t(1;21)mosaicism Philip et al.47

Tetrasomy 21 Pober et al.8

Deletion:
46,XY,der(21)t(10;21)(p11;p11) Yunis et al.132

46,XY,�X,dic(X;21)(p11.1;p11.1) Smith et al.172

der(21)t(3;21)(p24.3;q11.2)mat Pettigrew62

Chromosome 22:
Duplication:

47,XY,�der(22)t(6;22)(6p25;q11.2) Scarbrough et al.92

47,XX or XY,�der(22)t(11;22)(q23;q11) Iselius et al.,134 Fraccaro et al.,135 Phelan et al.,136 Azancot et
al.,137 de Beaufort et al.,138 Aurias et al.,139 Noel et al.,140

Dean et al.,29 Kousseff,43 Hickmann et al.,141 van Dooren,45

Tonks et al.,39 Dott et al.,102 Borys and Taxy,113 and Kadir et
al.142

Trisomy 22 Kim et al.,173 Ladonne et al.,174 Phillipson et al.,175 Dean et
al.,29 Golombek and Shaw,176 Ramsing et al.,177 and Van Voss
et al.178

Deletion:
45,XX,der(18)t(18;22)(qter;q11),�22 Geneix et al.171

46,XX,der(22)t(1;22)(q12;p12)[11]/46,XX[9] Ahmed et al.42

del(22)(q11q11) Betremieux et al.152

46,XX,der(22)t(4;22)(q28.3;p13) Celle et al.73

Chromosome X:
Balanced translocation:

46,X,t(X;1)(q26;q12) Punnett35

Monosomy:
45,X David and Illingworth,6 Benjamin et al.,48 Bollmann et al.,87

Tibboel and Gaag,31 Cunniff et al.,131 Robert et al.,125 Dawani
et al.,180 and Scott et al.57

Diploid/tetraploid mosaicism:
92,XXXX/46,XX Witters et al.154

Duplication:
46,XY,der(6)t(X;6)(p21.2;p25) Batanian et al.94

Deletion:
46,X,del(X)(p22.1) Plaja et al.179

der(X)t(X;2)(q27;p13)mat Sarda et al.53

der(X)t(X;15)(p22;q15)mat Zabel and Baumann160

dup(15)(q15q26) � del(X)(p22) van Dooren45

der(X)t(X;Y)(p22.3;q11.2) Pober et al.8

46,XY,�X,dic(X;21)(p11.1;p11.1) Smith et al.172

Chromosome Y:
Duplication:

der(X)t(X;Y)(p22.3;q11.2) Pober et al.8

Deletion:
46,XY/46,X,der(Y)t(Y;1)(q12;q12) Ahn et al.40

46,XY[9]/46,X,der(Y),t(Y;1)(q12;q12)[12] Zeng et al.41

a Always with deletion.

this region is deleted, two also have duplications of the
distal portion of 14q, which is discussed below.45,59

Deletion of 3q22

Deletions of this region have been described in three in-
dividuals with CDH.67,68 Two of these patients had ble-
pharophimosis and facial dysmorphism most likely at-
tributable to deletions of FOXL2, which is known to cause
blepharophimosis, ptosis, and epicanthus inversus syn-

drome (BPES [MIM 110100]).67,68 The most-promising
CDH candidate genes located in this region are the genes
for cellular retinol binding protein 1 (RBP1 [MIM 180260])
and cellular retinol binding protein 2 (RBP2 [MIM
180280]). These genes are part of the retinol signaling
pathway and have been shown to play a role in vitamin
A homeostasis and lung maturation in mice.181,182 No mu-
tations in RBP1 or RBP2 have been described in patients
with CDH to date.
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Deletion of 4p16

Wolf-Hirschhorn syndrome (MIM 194190) is associated
with deletions of 4p16 and is characterized by a “Greek
helmet” facial appearance, growth retardation, mental re-
tardation, seizures and/or epilepsy, cleft lip and/or palate,
and cardiac abnormalities. Although not a common find-
ing in Wolf-Hirschhorn syndrome, CDH has been de-
scribed in association with at least 14 cases of 4p16
deletion.8,37,50,71,75–77,79–81,183 The patient described by Cas-
accia et al.77 has the smallest known deletion of 4q16 as-
sociated with CDH (2.6 Mb), with the deletion extending
from locus D4S43 to the telomere.

Duplication or Deletion of 4q31

CDH has been described in four individuals with 4q31
duplications.45,71,73,74 Deletions of this region have also
been seen in four individuals with CDH.45,82,84,85

Duplication of 5p15

Duplications of 5p15 have been described in at least four
patients with CDH.89–91 All these cases were accompanied
by an additional chromosomal anomaly, such as deletion
9p22-pter or deletion 15q26-qter, both of which are dis-
cussed below.

Deletion of 6p25

Deletions of this region have been seen in at least three
individuals with CDH, all of whom have an additional
chromosomal duplication.54,94,95

Deletion of 6q25.3-qter

Deletions involving this region have been seen in four
cases of CDH.27,32,45,97 Le Caignec et al.32 used array CGH
to identify a !5-Mb subtelomeric deletion of 6q in a pa-
tient with CDH and other anomalies. It should be not-
ed, however, that this same deletion was found in the
patient’s mother, who presented with only learning
disabilities.

Deletion of 8p23.1

Deletions involving 8p23.1 have been described in 130
individuals with abnormal phenotypes, including nine
patients with CDH.24,37,43,111–116 More-distal deletions of
8p23.1-p23.2 have also been found in unaffected individ-
uals, suggesting that more-telomeric deletions may be a
normal variant in the white population.184 Shimokawa et
al. used array CGH to define an ∼6-Mb deletion of 8p23.1
in a patient with CDH.112 This deletion was flanked by
low-copy repeats and was bounded by BACs RP11-143D15
and RP11-252C15. GATA4 resides within this region and
has been proposed as a candidate gene for CDH. Of note,
deletions and loss-of-function mutations of GATA4 have
been seen in individuals with cardiac defects involving
the cardiac septum, and the majority of patients with CDH

with deletion of 8p23.1 also have cardiac anomalies (atrial,
ventricular, or atrioventricular septal defect).115,184–187

Gata4 heterozygous-null mice also display diaphragm de-
fects in association with pulmonary and cardiac abnor-
malities.22 This animal model is discussed in greater detail
below.

Duplication of 8p21-p23.1

Duplication of 8p21-p23.1 has been described four times
in patients with CDH.39,45,106,107 The patient described by
Moreno Fuenmayor et al.107 had a phenotype consistent
with that of other patients with duplication 8p21.188 The
patient described by Ringer et al.106 had an inverted du-
plication of 8p11.22-p23.1. In some instances, patients
with an inverted duplication of 8p also have a small de-
letion of 8p23.1, a region recurrently deleted in CDH. Un-
fortunately, it is unclear whether the patient described by
Ringer et al.106 also carried this deletion.

Deletion of 8q22-q23

Three patients with CDH with 8q deletions have been
described.117–119 Each of these deletions included bands
8q22-q23, and all these patients had dysmorphic features
similar to those of other patients with similar deletions.189

There are also three affected individuals with balanced
translocations that involve this region.37,105 FOG2 resides
within this region, and data supporting its role in dia-
phragm development are described below.

Deletion of 9p24-pter

Deletions of this region have been described in five pa-
tients with nonisolated CDH.43,90,127,129 All these deletions
were terminal deletions as part of unbalanced transloca-
tion with another autosome.

Deletion of 11p13

Although only two patients with CDH have been de-
scribed with a deletion of 11p13, this region is of particular
interest because it harbors the Wilms tumor 1 gene
(WT1).145,146 Data supporting a role for WT1 in the de-
velopment of CDH is described below.

Duplication of 11q23.3-qter

This duplication has been described numerous times in
patients with CDH. In most cases, this duplication is the
result of the more common chromosomal anomaly
47,XX, or XY,�der(22)t(11;22), resulting from 3:1 meiotic
segregation.144 Two patients have been described in whom
the duplication of 11q23-qter is the result of an unbal-
anced translocation with another autosome.143,144

Duplication of 12p

Mosaic tetrasomy 12p, or Pallister-Killian syndrome, is
characterized by coarse facial features, sparse temporal
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Figure 2. Retinoic acid (RA) signaling pathway and CDH can-
didate genes. Retinol travels to target cells via the blood and is
taken up by receptors on the cell surface. Once in the cytoplasm,
retinol is converted to retinal by retinol dehydrogenases and then
to RA by retinal dehydrogenases, of which RALDH2 is the predom-
inant enzyme. The action of RALDH2 can be inhibited by terato-
gens, such as nitrofen. Several binding proteins are present in the
cytoplasm, including retinol-binding proteins 1 and 2 (RBP1 and
RBP2), which bind retinol and retinal, and cellular RA-binding
proteins 1 and 2 (CRABP1 and CRABP2). When RA enters the nu-
cleus, it mediates its effects by binding to RA receptors (RARs)
and retinoid X receptors (RXRs). RARs and RXRs dimerize and reg-
ulate gene expression by binding to short DNA sequences—RA-
responsive elements (RAREs) and retinoid X–responsive elements
(RXREs)—located in the vicinity of target genes. COUP-TFII ex-
pression is upregulated by RA. COUP-TFII can act as a repressor
of this pathway by directly sequestering RXR, thereby preventing
heterodimerization to RAR and inhibiting gene transcription. This
process may be a negative feedback system that precisely balances
the transcription of certain genes during diaphragm development.
COUP-TFII has been shown to interact physically with FOG2, which,
in turn, modulates the transcriptional activity of GATA4, GATA5,
and GATA6.

hair, skin abnormalities, mental retardation, and a high
rate of CDH.190 This syndrome usually results from mo-
saicism for an isochromosome: i(12)(p10).191 Also, one pa-
tient with CDH and a balanced translocation involving
12p13.1 has been described.39

Duplication of 14q32

Mosaic trisomy 14 has been described in at least two pa-
tients with nonisolated CDH, and duplications of 14q32
have been described three times in association with
CDH.37,45,57,59,158

Deletion of 15q26

Deletions of the distal part of the long arm of chromosome
15 have been described in at least 26 patients with non-

isolated CDH, making this anomaly one of the most re-
ported structural chromosomal anomalies in CDH.33,38 The
majority of patients with deletions of the long arm of 15q
have a severe phenotype that can include cardiac abnor-
malities, limb abnormalities, and dysmorphic features.
Chick ovalbumin upstream promoter-transcription factor II
(COUP-TFII) resides within this region, and data support-
ing its role in the development of CDH is described below.

Duplication of 22pter-q11

Duplications of this region have been described numerous
times in patients with CDH. This duplication usually is
seen as part of the common chromosomal anomaly
47,XX, or XY,�der(22)t(11;22), resulting from 3:1 meiotic
segregation.144 Although no patients with isolated dupli-
cations of this region have been described, CHD is also a
recurrent finding in individuals with trisomy 22.33

Candidate Pathways and Genes

Although the etiology of most cases of CDH remains un-
known, there is increasing evidence that specific pathways
and genes play a role in the development of CDH. These
data are derived from the identification of candidate genes
in regions commonly deleted and/or duplicated in CDH
and from several genetic animal models. In this section,
we review evidence for involvement of the retinoid sig-
naling pathway and genes COUP-TFII, FOG2, GATA4,
WT1, and SLIT3 in the development of CDH.

Retinoid Signaling Pathway

Vitamin A (retinol) and its derivatives (retinoids) are es-
sential for embryonic development. Abnormalities in the
retinoid signaling pathway and its downstream targets
have long been hypothesized to lead to the development
of CDH.192 The first connection between retinoids and
CDH resulted from the observation that 25%–40% of the
offspring of rat dams that were fed a diet deficient in vi-
tamin A developed CDH and that the proportion of af-
fected pups diminished when vitamin A was reintroduced
into the diet in midgestation.193–195

Subsequently, in utero exposure to the herbicide nitro-
fen, bisdiamine (a spermatogenesis inhibitor), SB-210661
(a 5-lipoxygenase inhibitor), and BPCA (a thromboxane-
A2 receptor antagonist) was shown to cause CDH in ro-
dents.196 The diaphragmatic defects caused by these sub-
stances closely mimicked the characteristics of human
posterolateral CDH, including the intermittent incidence
of associated cardiac anomalies.197 The connection be-
tween these defects and the retinoid signaling pathway
became clear when vitamin A was found to decrease the
incidence and severity of nitrofen-induced CDH.13 Later,
it was shown that nitrofen, bisdiamine, SB210661, and
BPCA inhibit RALDH2, a key enzyme responsible for the
conversion of retinal to retinoic acid.196

Two knockout mouse models also suggest a role for re-
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tinoid signaling in the development of CDH. A proportion
of RARa/RARb receptor double-knockout mice have pos-
terolateral diaphragmatic defects similar to those seen
both in humans and in teratogen-induced mouse models
of CDH.198 Targeted ablation of Coup-TFII, a gene encoding
a transcription factor regulated by the retinoid signaling
pathway, has also been shown to cause posterolateral CDH
similar to Bochdalek-type CDH seen in humans.199

Preliminary evidence that retinoids may play a role in
the development of CDH in human comes from a small
study in which the levels of plasma retinol and retinol-
binding protein in the cord blood of infants with CDH
was found to be 50% lower than those in age-matched
controls.200

COUP-TFII

COUP-TFII (also known as NR2F2) is a transcription factor
in the steroid/thyroid hormone receptor superfamily. The
COUP-TFII gene is located on chromosome 15q26 in a
region recurrently deleted in individuals with CDH.33,38

Klaassens et al.38 defined a minimally deleted region for
CDH on chromosome 15q26 by use of FISH and array
CGH data from patients with nonisolated CDH. Of the
genes within this region, COUP-TFII was thought to be the
strongest candidate because its expression had been
shown previously to be regulated by retinoids and because
COUP-TFII regulates gene transcription by influencing ret-
inoic acid receptor or retinoid X receptor heterodimeri-
zation (fig. 2).201,202 This region has since been reduced to
include COUP-TFII and only eight other known genes.57

As mentioned above in the discussion of the retinoid sig-
naling pathway, homozygous tissue-specific ablation of
Coup-TFII in mice causes posterolateral CDH similar to
Bochdalek-type CDH seen most commonly in humans.199

Together, these data suggest that deletion of COUP-TFII
is likely to play a key role in the development of CDH in
individuals with 15q26 deletions. It has not yet been de-
termined whether abnormalities in COUP-TFII are respon-
sible for cases of CDH not associated with 15q26 deletions.
Although several research groups are actively screening
COUP-TFII in patient cohorts, to date, no CDH-causing
mutations in this gene have been published.

FOG2

FOG2 (also known as ZFPM2) is a zinc finger–containing
protein that modulates the transcriptional activity of
GATA proteins, which, in turn, play important roles in
early embryogenesis. The first indication that FOG2 might
play a role in normal diaphragm development came with
the discovery of an N-ethyl-N-nitrosourea mouse mutant
with pulmonary hypoplasia and an abnormal diaphragm
that lacked muscularization of the posterolateral and pe-
ripheral regions. Sequencing of the Fog2 gene in this
mouse revealed a hypomorphic splice-donor mutation.21

A de novo R112X heterozygous mutation was subse-
quently found in an infant who died shortly after birth

with diaphragmatic eventration and severe pulmonary
hypoplasia.21

Although no mutations in FOG2 have been found in
individuals with CDH, it is interesting to note that FOG2
is located on chromosome 8q23 in a region commonly
deleted in individuals with CDH and that FOG2 interacts
physically with COUP-TFII.203 It is possible that these pro-
teins work together to regulate downstream target genes
that play a role in the development of CDH.

GATA4

GATA4 is a member of a family of DNA-binding proteins
that recognize a consensus sequence (the GATA motif),
which is found in the promotor regions of many genes.204

GATA4 encodes a transcription factor that interacts with
FOG2 during the morphogenesis of the heart.205 GATA4 is
located on chromosome 8p23.1, a region recurrently de-
leted in individuals with CDH.

Recently, Jay et al.22 showed that 70% of heterozygous
Gata4�/Dex2 mice on a C57BL/6 background displayed car-
diac, lung, or diaphragm defects. The diaphragmatic de-
fects, which affected ∼30% of mice, were located in the
ventral midline and were covered by a sac that was con-
tinuous with the diaphragm. Together with the occurrence
of 8p23.1 deletions in human patients, this research pro-
vides additional evidence that GATA4 is important for
lung and diaphragm development in humans. To date, no
CDH-causing mutations in GATA4 have been identified.

WT1

WT1 is located on chromosome 11p13, a region recur-
rently deleted in individuals with CDH, and encodes a
zinc-finger transcription factor that is expressed in the
pleural and abdominal mesothelium that help to form the
diaphragm.145,146,206 Mutations in WT1 associated with
CDH have been described in two patients with Denys-
Drash syndrome (MIM 194080)—characterized by male
pseudohermaphroditism, nephropathy, and Wilms tu-
mor—and one patient with Frasier syndrome (MIM
136680)—characterized by focal and segmental glomer-
ulosclerosis, male pseudohermaphroditism, and gonadob-
lastoma.207–209 A child with Meacham syndrome (MIM
608978)—characterized by CDH, double vagina, sex re-
versal, and cardiac malformations—was also found to
have a de novo WT1 mutation.210 Further evidence of the
role of WT1 in CDH comes from homozygous Wt1-null
mouse embryos that develop diaphragmatic hernias.211

Recently, Clugston et al.11 compared the Wt1�/� mutant
with other CDH animal models—namely, the nitrofen rat
model and the vitamin A–deficient rat model. They found
that the Wt1 null mutants have defects in the PPF as do
the two other models, suggesting that there is a common
pathogenic mechanism in dietary, teratogenic, and ge-
netic models of CDH.
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Homolog of Drosophila Slit 3 (SLIT3)

SLIT3 is located on chromosome 5q35.1 and is one of
three human homologs of the Drosophila Slit gene. In
mice, Slit3 is expressed predominantly in the mesothelium
of the diaphragm during embryonic development.212 Ho-
mozygous Slit3-deficient mice have CDH on or near the
ventral midline portion of the central tendon that is sim-
ilar to the central (septum transversum) type of diaphrag-
matic hernia seen in humans.212,213 Although SLIT3 seems
to be a strong candidate gene for this relatively rare type
of CDH, no SLIT3 mutations have been identified in hu-
mans with CDH to date.

Discussion

The existence of specific CDH-associated genetic syn-
dromes, recurrently deleted and/or duplicated chromo-
somal regions, and transgenic mouse models of CDH pro-
vide evidence of the important role that genetic factors
play in the development of CDH. Future research efforts
in each of these areas will provide information that will
help us to better understand the etiology of many cases
of CDH. Although the genes for several CDH-related syn-
dromes are known, many have not yet been discovered.
Additional efforts must also be made to determine the role
that these genes play in diaphragm development. The in-
creased use of high-resolution cytogenetic techniques—
such as array CGH—in both the clinical and research set-
tings are likely to aid in the discovery of new CDH-related
genes as new chromosomal regions associated with CDH
are identified and as previously identified regions are re-
fined. Transgenic models have proven to be a valuable
resource not only as a way to begin to understand the role
that specific genes play in diaphragm development but
also as a tool for the discovery of new CDH-related genes.
The current emphasis on development of improved re-
sources for transgenic mouse studies will make it easier
for researchers to rapidly test hypotheses regarding the
involvement of particular genes or gene combinations in
diaphragm development. The increasing availability of
new technologies, such as micro–magnetic resonance im-
aging scanners, may also make it easier to screen existing
mouse strains for diaphragm defects.

Although several genes have been clearly shown to un-
derlie abnormal diaphragm development in mice, few
CDH-related mutations have been identified in corre-
sponding genes in humans. One possible explanation is
that the genes and pathways that underlie CDH devel-
opment in mice are different than those that commonly
cause CDH in humans. This, however, seems less likely
when one considers that many of these genes are located
in chromosomal regions recurrently deleted in individuals
with CDH and, therefore, represent excellent candidates
for CDH in humans.

Another possibility is that de novo mutations in indi-
vidual genes are responsible for only a fraction of human

CDH cases. The chance of identifying such an event may
be particularly low when one considers that this fraction
would likely represent a heterogeneous population in
which de novo mutations in many different genes can
result in the same basic phenotype. If this is the case,
identifying de novo mutations in individual genes may
require both the recruitment and screening of relatively
large numbers of patients with CDH. Such efforts may still
be worthwhile because the identification of de novo
changes provides valuable evidence that a particular gene
is involved in the development of human CDH. Such dis-
coveries could also prove clinically significant if pheno-
type and/or genotype analysis suggests that a particular
subgroup of patients with CDH is more likely to carry de
novo mutations in a particular gene. It is important, how-
ever, that such screening efforts do not overlook subtle
inherited changes that may be important for understand-
ing the complex inheritance pattern that likely underlies
the majority of CDH cases.

The assumption that the majority of CDH cases results
from a complex inheritance pattern, in which a combi-
nation of genetic and environmental factors affect the fi-
nal phenotype, is consistent with the sporadic nature of
the disease and the relatively few instances of familial
cases described in the literature.1,4,5 Indeed, it seems rea-
sonable to hypothesize that relatively small inherited
changes in the function of two or more genes within the
same CDH-related pathway could cause diaphragmatic de-
fects in the offspring of otherwise-normal carrier parents.
An additional level of variation may also be added by en-
vironmental stressors—such as toxins or nutritional fac-
tors such as vitamin A—acting on genetically susceptible
individuals. The combined effects of several genes and the
environment may also underlie the association of CDH
with some chromosomal abnormalities.

Research into the underlying causes of CDH has the
potential to positively effect the clinical management of
CDH in affected individuals and their families. The de-
scription of multiple genetic syndromes associated with
CDH highlights the importance of a careful evaluation of
patients with CDH. In cases in which CDH is diagnosed
prenatally, such an evaluation may have an influence on
medical decision making, including decisions made about
the possible termination of the pregnancy. It has also be-
come clear that a significant proportion of nonisolated
CDH cases are attributable to chromosomal anomalies.30

Since recent studies suggest that some causal chromoso-
mal anomalies can be missed on routine G-banded chro-
mosome analysis, it seems prudent to consider obtaining
a higher-resolution cytogenetic study, such array CGH,
to look for cryptic deletions and duplications in patients
with nonisolated CDH with normal chromosome analy-
ses.23,24,61 Storage of DNA samples from patients with CDH
and their parents should also be considered becauase ac-
cess to such material may ultimately allow a diagnosis to
be made, which, in turn, would form the foundation for
improved genetics counseling for all family members.
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Our understanding of the genetic factors associated with
CDH may make it possible to devise preventative strategies
or to improve therapeutic interventions for patients with
CDH. It is important to keep in mind that measures aimed
at improving clinical outcome may not require the pre-
vention or correction of the diaphragmatic defect itself.
Instead, these strategies may focus on improvement in
postnatal lung function, and, eventually, prenatal mod-
ulation (such as tracheal occlusion procedures), since pul-
monary hypoplasia and pulmonary hypertension are ma-
jor contributors to both the morbidity and the mortality
associated with CDH. With this in mind, it will be im-
portant to identify which CDH-related genes and path-
ways have direct affects on normal diaphragm and lung
development, because they may be particularly good ther-
apeutic targets.

Addendum

After submission of this manuscript, Pasutto et al.214 re-
ported that homozygous mutations in the stimulated by
retinoic acid gene 6 homolog (STRA6 [MIM 610745]) cause
a broad spectrum of malformations, including CDH, an-
ophthalmia, congenital heart defects, alveolar capillary
dysplasia, lung hypoplasia, and mental retardation. In a
separate report, Kawaguchi et al.215 showed that STRA6
acts as a membrane receptor for retinol binding protein
and mediates cellular uptake of vitamin A.
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